Unit I: Earth's Systems and Resources (10-15%)

- 1. Geologic time scale
 - a. Rock layers (strata) are laid down in succession with each strata representing a period of time
 - b. The principle of superposition any given stratum is probably older than those above it and younger than those below it
- 2. Earth structure
 - a. Crust
 - i. Composed of (in order): Oxygen, Silicon, Aluminum, Iron, etc.
 - ii. Two types
 - 1. Continental
 - 2. Oceanic
 - b. Moho
 - i. Boundary between crust and mantly
 - c. Mantle
 - i. Majority of mass of Earth
 - ii. Upper third (asthenosphere) is plastic-like
 - d. Core
 - i. Iron (mostly) and nickel
 - ii. So hot that the outer core is liquid while inner core is under such pressure as to be solid
- 3. Tectonics
 - a. Plate boundaries
 - i. Convergent
 - ii. Divergent
 - iii. Transform
 - b. plate boundaries among oceanic and continental plates vary depending on boundary type
 - i. subduction, etc.
- 4. Earthquakes
 - a. Sudden movement of crust
 - b. Measured on logarithmic Richter scale
 - c. Waves
 - i. Body waves
 - 1. P-waves (compressional)
 - 2. S-waves (shear)
 - ii. Surface waves
- 5. Seasons, solar intensity and latitude
- 6. Soil
 - a. OABCR
 - b. Sand, Silt, Clay
 - c. Loam equal parts sand, silt, clay (very good nutrients and water holding without becoming water logged)
 - d. Desertification
 - i. Productive potential of arid or semi-arid land falls by at least 10% due to human activity or climate change
 - e. Salinization
 - i. Water that is not absorbed into the soil and evaporates leaves behind dissolved salts in topsoil
 - f. soil degradation by type
 - i. water erosion (56%)
 - ii. wind erosion (28%)

- iii. chemical degradation (12%)
- iv. physical degradation (4%)
- 7. Rock Cycle
- 8. Atmosphere
 - a. Comp.
 - i. N 78%
 - ii. O 21%
 - iii. $H_2O 0-4\%$
 - iv. $CO_2 << 1\%$
 - v. CH₄ (greenhouse gas)
 - vi. N₂O (greenhouse gas)
 - vii. O₃ (97% in stratosphere)
 - b. Layers (They Say My Time Is Ending)
- 9. Weather and Climate
 - a. Air masses (tropical, maritime, etc.)
 - b. Air pressure
 - c. Albedo (Latin for "White") measured in 0-1
 - d. mountain ranges
 - e. landmasses
 - f. etc.
- 10. Atmospheric circulation and the Coriolis Effect
 - a. Hadley, Ferrel, Polar Cells (Hey Fat Puppy)
 - b. Monsoons
- 11. Earth's Water Resources and Use
 - a. 97% saline
 - b. 3% fresh
 - i. 30% ground
 - ii. 68.7% icecaps/glaciers
 - iii. surface 0.3%
 - 1. 87% lakes
 - 2. 11% swamps
 - 3. 2% rivers
 - c. lake zonation
 - i. Horizontal
 - 1. littoral zone (shore)
 - 2. limnetic zone (open water)
 - ii. Vertical
 - 1. Euphotic zone (with light)
 - 2. Benthic zone (aphotic depths)
 - d. Ocean circulation
 - i. Thermohaline current
 - 1. Sinking north of England
 - 2. Rising in Indian Ocean and south of Aleutian Range
 - ii. Ekman Spiral (transport)
 - 1. Results in 45⁰ transport of surface water in relation to wind direction
 - 2. Results in coastal upwelling

Unit II: The Living World (10-15%)

- 1. Ecosystems
 - a. Community characteristics
 - i. Diversity (number of different species)
 - ii. Abundance (number of individuals of each species)
 - b. Species interactions
 - i. Amensalism (bad/neutral black walnut tree emits chemical that kills neighboring plants)
 - ii. Commensalisms (good/neutral remora on shark)
 - iii. Competition (good/bad)
 - iv. Mutualism (good/good bees pollinating flowers)
 - v. Parasitism (good/bad tapeworms, etc.)
 - vi. Predation (good/bad)
 - vii. Saprotrophism (good/neutral obtain nutrients from dead or decaying plants or animals)
 - c. Keystone species
 - d. Edge effects how the local environment changes along some type of boundary or edge
 - i. Some species do well in edge environments ("Edge species") while others do not
 - e. Biomes
- 2. Energy flow
 - a. Food chains/webs
 - b. Trophic levels
- 3. Natural selection
 - a. Stabilizing selection
 - b. Directional selection
 - c. Disruptive selection
- 4. Succession
 - a. Primary (bare rocks)
 - b. Secondary (disturbed area but topsoil still remains)
- 5. Strategists
 - a. r-strategists (mature rapidly/short-lived species/niche generalists)[raccoon]
 - b. k-strategists (mature slowly/long-lived/niche specialists) [koala]
- 6. Survivorship curves
 - a. Type I (man) low mortality and long lifespan
 - b. Type II (birds) moderate both
 - c. Type III (oysters) high mortality
- 7. Biogeochemical Cycles
 - a. Carbon Cycle
 - i. Photosynthesis:
 - 1. $6CO_2 + 6H_2O + \text{sunlight} \rightarrow C_6H_{12}O_6 + 6O_2$
 - ii. Respiration:
 - 1. $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + energy$
 - iii. Major reservoirs:
 - 1. Atmosphere 750 Gt
 - 2. Biosphere 575 Gt
 - 3. Geosphere 1,500 Gt
 - 4. Hydrosphere 36,000 Gt

5. Carbon being released from the fifth and far more ancient fossil sedimentreservoir is suspected as a primary cause of global warming

b. Nitrogen cycle

- i. Fixation N_2 to NH_3
- ii. Nitrification ammonia is then nitrified by bacteria in the soil to form first nitrite (NO_2 -) and then nitrate (NO_3 -) ions
- iii. Assimilation Nitrate (largely) is absorbed by the roots of plants, where it enters the biological reservoir
- iv. Decomposition Take nitrates and nitrites in organic structures and break them down into ammonia
- v. Denitrification Take nitrates break down into atmospheric nitrogen (N_2)

c. Phosphorus Cycle

- i. Phosphorus is extremely limited in the atmosphere.
- ii. The largest quantities of phosphorus occur in mineral deposits, largely as marine sedimentary rocks
- iii. The phosphorus from rocks is slowly released to terrestrial and aquatic ecosystems through the gradual weathering of rocks.
- iv. It is then absorbed by plants and slowly recycled in ecosystems.